Solutions to Quiz 1, ECED 3300

Problem 1

a) By definition,

$$
I(R)=\int d \mathbf{S} \cdot \mathbf{J}
$$

On the surface of the sphere, $\mathbf{J}=\mathbf{a}_{r} J_{0} R / R=J_{0} \mathbf{a}_{r} ; d \mathbf{S}=\mathbf{a}_{r} R^{2} \sin \theta d \theta d \phi$, implying that $d \mathbf{S} \cdot \mathbf{J}=$ $J_{0} R^{2} \sin \theta d \theta d \phi$. Thus,

$$
I(R)=J_{0} R^{2} \underbrace{\int_{0}^{\pi} \sin \theta d \theta \int_{0}^{2 \pi} d \phi}_{=4 \pi}=4 \pi R^{2} J_{0} .
$$

By definition,

$$
I=\frac{d Q}{d t} \Longrightarrow Q=\int_{0}^{t} d t I=4 \pi R^{2} J_{0} t
$$

b) The total current through the shell is given by

$$
I=\underbrace{\int_{1} d \mathbf{S} \cdot \mathbf{J}}_{\text {inner sphere }}+\underbrace{\int_{2} d \mathbf{S} \cdot \mathbf{J}}_{\text {outer sphere }} .
$$

On the inner sphere $\mathbf{J}=\mathbf{a}_{r} J_{0} R_{1} / R, \mathbf{a}_{n}=-\mathbf{a}_{r}$ and on the outer sphere, $\mathbf{J}=\mathbf{a}_{r} J_{0} R_{2} / R, \mathbf{a}_{n}=\mathbf{a}_{r}$. It follows that

$$
I=4 \pi J_{0} R_{2}^{3} / R-4 \pi J_{0} R_{1}^{3} / R=4 \pi J_{0}\left(R_{2}^{3}-R_{1}^{3}\right) / R
$$

Problem 2

By definition,

$$
\mathbf{B}=\nabla \times \mathbf{A}=\frac{1}{r^{2} \sin \theta}\left|\begin{array}{ccc}
\mathbf{a}_{r} & r \mathbf{a}_{\theta} & r \sin \theta \mathbf{a}_{\phi} \\
\partial_{r} & \partial_{\theta} & \partial_{\phi} \\
0 & 0 & \sin ^{2} \theta / r
\end{array}\right|=\frac{1}{r^{3}}\left(2 \cos \theta \mathbf{a}_{r}+\sin \theta \mathbf{a}_{\theta}\right)
$$

Problem 3

As the cylinder is very long, translational symmetry along the axis, coupled with axial symmetry, allow us to use Ampère's law. The current density $\mathbf{J}=\mathbf{a}_{z} I /\left(\pi a^{2}\right)$, where we place the conductor such that its axis coincides with the z axis. By symmetry, we guess the field direction to be
azimuthal, $\mathbf{H}=H \mathbf{a}_{\phi}$. Using circles as Ampèrian paths, we obtain
a)

$$
H 2 \pi \rho=J \pi \rho^{2}=\left(\frac{I}{\pi a^{2}}\right) \pi \rho^{2} \Longrightarrow H=\frac{I \rho}{2 \pi a^{2}} .
$$

b)

$$
H 2 \pi \rho=I \Longrightarrow H=\frac{I}{2 \pi \rho}
$$

Thus,

$$
\mathbf{H}=\left\{\begin{array}{cc}
\left(\frac{I \rho}{2 \pi a^{2}}\right) \mathbf{a}_{\phi}, & \rho \leq a \\
\left(\frac{I}{2 \pi \rho}\right) \mathbf{a}_{\phi}, & \rho \geq a
\end{array}\right.
$$

